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Abstract

In this paper, we apply two purely irrotational theories of the motion of a viscous fluid, namely, viscous potential flow
(VPF) and the dissipation method to the problem of the decay of waves on the surface of a sphere. We treat the problem of
the decay of small disturbances on a viscous drop surrounded by gas of negligible density and viscosity and a bubble
immersed in a viscous liquid. The instantaneous velocity field in the viscous liquid is assumed to be irrotational. In
VPF, viscosity enters the problem through the viscous normal stress at the free surface. In the dissipation method, viscosity
appears in the dissipation integral included in the mechanical energy equation. Comparisons of the eigenvalues from VPF
and the dissipation approximation with those from the exact solution of the linearized governing equations are presented.
The results show that the viscous irrotational theories exhibit most of the features of the wave dynamics described by the
exact solution. In particular, VPF and DM give rise to a viscous correction for the frequency that determines the crossover
from oscillatory to monotonically decaying waves. Good to reasonable quantitative agreement with the exact solution is
also shown for certain ranges of modes and dimensionless viscosity: For large viscosity and short waves, VPF is a very
good approximation to the exact solution. For ‘small’ viscosity and long waves, the dissipation method furnishes the best
approximation.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

A viscous liquid drop surrounded by a quiescent gas or a gas bubble immersed in a viscous liquid tends to
an equilibrium spherical shape if the effects of surface tension are significantly large in comparison with grav-
itational effects. When the spherical interface of the bubble or drop is slightly perturbed by an external agent,
the bubble or drop will recover their original spherical configuration through an oscillatory motion of decreas-
ing amplitude. In the case of the drop, depending upon its size and physical properties, the return to the
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spherical shape may consist of overdamped aperiodic waves that decrease monotonically. For a drop
immersed in another viscous liquid, decaying oscillatory waves always occurs at the liquid–liquid interface.

Early studies on the subject for inviscid liquids are due to Kelvin (1890) and Rayleigh (1896). Lamb (1881)
considered fully-viscous effects on the oscillations of a liquid spheroid by solving the linearized Navier–Stokes
equations. Applying Stokes’ ideas (Stokes, 1851), Lamb also approximated the effect of viscosity on the decay
rate of the oscillations on a liquid globule by means of the dissipation method, in which an irrotational veloc-
ity field is assumed. His result is independent of the nature of the forces that drive the interface to the spherical
shape. Furthermore, Lamb used energy arguments to compute the frequency of the oscillations governed by
self-gravitation in the absence of viscosity, recovering the result due to Kelvin. In his book on hydrodynamics,
Lamb (1932) included his dissipation calculation of the decay rate of the oscillations on a spherical globule
and added the corresponding result for a spherical bubble in a viscous liquid. Chandrasekhar (1959) studied
fully-viscous effects on the small oscillations of a liquid globe with self-gravitation forces neglecting surface
tension. The same form of the solution was also obtained by Reid (1960) when surface tension instead of
self-gravitation is the force that tends to maintain the spherical shape. A good account of both solutions is
presented in the treatise by Chandrasekhar (1961). Following Lamb’s reasoning, Valentine et al. (1965)
applied the dissipation method to the case of a drop surrounded by another viscous liquid. They presented
their result for two fluids with the same density. However, the dissipation approximation for the two-liquid
case, according to Miller and Scriven (1968), underestimates the decay rate.

Comprehensive analyses of viscous effects in a drop embedded in liquid were presented by Miller and Scri-
ven (1968) and Prosperetti (1980a) using normal modes. The latter found a continuous spectrum of eigen-
values for an unbounded outer fluid. Prosperetti (1977, 1980b) considered the initial-value, fully-viscous
problem posed by small perturbations about the spherical shape of a drop or a bubble with no assumption
about the form of the time dependence. The solution showed that the normal-mode results are recovered
for large times.

Finite size disturbances have received some attention. Tsamopoulos and Brown (1983) considered the
small-to-moderate-amplitude inviscid oscillations using perturbation methods. Lundgren and Mansour
(1988) and Patzek et al. (1991) studied the inviscid problem posed by large oscillations applying the bound-
ary-integral and the finite-element methods, respectively. Lundgren and Mansour also investigated the effect
of a ‘small’ viscosity on drop oscillations. Basaran (1992) carried out the numerical analysis of moderate-to-
large-amplitude axisymmetric oscillations of a viscous liquid drop.

In this paper, approximate solutions of the linearized problem for small departures about the spherical
shape for a drop surrounded by a gas of negligible density and viscosity or a bubble embedded in a liquid
are sought using viscous potential flow (VPF) and the dissipation method. VPF is a purely-irrotational-flow
theory in which viscosity enters the problem through the viscous normal stress at the interface (Joseph and
Liao, 1994a,b; Joseph, 2003). If the viscosities of the fluids are neglected, the analysis reduces to inviscid
potential flow (IPF). Another viscous irrotational approximation can be obtained by applying the dissipation
method (Joseph and Wang, 2004). In this approximation, which requires the evaluation of the mechanical
energy equation, viscous effects are accounted for through the computation of the viscous dissipation origi-
nated by the irrotational flow. In addition to his study of a viscous globule and a gas bubble, the dissipation
method was used by Lamb (1932) in his analysis of the effect of viscosity on the decay of free gravity waves. He
found the decay rate from the dissipation method in complete agreement with the exact solution for the decay
rate of free gravity waves for ‘small’ viscosity. However, his analysis did not render viscous effects for the fre-
quency of the waves. The dissipation calculation presented here does give rise to a viscous correction for the
wave frequency, thus predicting a crossover from oscillatory to monotonically decaying waves.

VPF was used by Funada and Joseph (2002) to study the problem of capillary instability. Their results for
the growth rate were in much better agreement with Tomotika’s (1935) exact normal-mode solution than
inviscid potential flow. Wang et al. (2005a) computed the growth rates for this configuration by adding a vis-
cous correction to VPF, when either the interior or exterior fluid is a gas of negligible density and viscosity.
They found good agreement between their results and the exact solution. The case of capillary instability of
two viscous liquids was considered by Wang et al. (2005b), obtaining good to reasonable agreement for the
maximum growth rates whereas poor agreement for long waves. Wang et al. (2005a,b) also used the dissipa-
tion method in the problem of capillary instability and obtained the same growth rate as the viscous correction
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of VPF. The decay of free gravity waves modeled as small disturbances about an infinite plane free surface was
studied by Joseph and Wang (2004) and Wang and Joseph (2006) using VPF and the viscous correction of
VPF. They found that the decay rate from VPF agrees with Lamb’s exact solution for short waves, whereas
the damping rate computed from the viscous correction of VPF for long waves agrees with both Lamb’s dis-
sipation result and his solution of the linearized Navier–Stokes equations. A comprehensive review on the the-
ory of irrotational flow of viscous fluids was given by Joseph (2006). The idea of a viscous correction of VPF is
discussed in detail by Joseph et al. (2007). They present examples of its application and show its relation with
the dissipation method.

Two viscous irrotational approximations are thus used in this study to determine the decay rate and fre-
quency of the oscillations on drops and bubbles, namely,

VPF or viscous potential flow, in which viscosity enters the analysis through the viscous normal stress at the
interface.
Dissipation method, which requires the integration of the mechanical energy equation with the approxima-
tion of irrotational motion yet zero-shear stress is satisfied at the free surface.

Results from these theories are compared to predictions from IPF or inviscid potential flow, in which the
viscosity is set equal to zero, and the solution of the linearized incompressible Navier–Stokes equations using
normal modes, hereinafter ‘exact solution’, given in the literature.

This paper is organized as follows: First, VPF analysis of a drop embedded in a viscous liquid is pre-
sented and the limiting cases of a drop in vacuum and a bubble in liquid are obtained. In Section 3, the
dissipation method is applied to the spherical shape. In Section 4, the exact solution of the linearized
fully-viscous problem is summarized. Results are discussed in Section 5 and, finally, several final remarks
are presented.
2. Viscous potential flow analysis of a spherical drop immersed in another fluid

Consider a single spherical drop of radius a filled with a fluid with density ql and viscosity ll immersed in
another fluid with density qa and viscosity la. The coefficient of interfacial tension is denoted as c. Both fluids
are incompressible and Newtonian with gravity neglected. At the basic or undisturbed state both fluids are at
rest and the pressure jump across the spherical interface is balanced by surface tension.

When the basic state is disturbed with small irrotational perturbations, the resulting velocity field can be
written as the gradient of a potential. The disturbance of the spherical interface is denoted by f � f(t,h,u),
0 6 h 6 p, 0 6 u 6 2p; the interface position is r = a + f.

For irrotational flow the incompressible Navier–Stokes equations reduce to the Bernoulli equation. The
resulting pressure field can be decomposed into the undisturbed pressure plus a ‘small’ disturbance.

After subtracting the basic state from the disturbed fluid motion and performing standard linearization of
the resulting expressions by neglecting products of the small fluctuations and products of their derivatives, one
obtains, for the interior motion (0 6 r < a)
r2/l ¼ 0; ð2:1Þ

pl ¼ �ql
o/l

ot
ð2:2Þ
and for the exterior motion (a < r <1)
r2/a ¼ 0; ð2:3Þ

pa ¼ �qa
o/a

ot
; ð2:4Þ
where / is the velocity potential and p is the pressure disturbance. For irrotational motion, the boundary con-
ditions at the interface require the continuity of the radial velocity and the balance of the normal stresses by
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interfacial tension. For small departures about the spherical shape, a� f and the boundary conditions can be
written as
ul
r ¼ ua

r ð2:5Þ

for the continuity of the radial velocity at r = a and
�p þ 2l
our

or

� �� �
¼ c

a2
ðL2 � 2Þf ð2:6Þ
for the balance of normal stresses across the interface r = a, written in linearized form, accounting for the pres-
sure balance in the undisturbed state. The notation ½½��� ¼ ð�Þr¼bþ � ð�Þr¼b� is being used to denote the jump
across the interface located at r = a. The linearized kinematic condition is
ur ¼
of
ot

ð2:7Þ
at r = a with, ur = o//or. The right-hand side of (2.6) is obtained from the linearized form of the divergence of
the outward unit normal vector to the disturbed interface for the interior fluid. The operator L2 is also known
as the spherical Laplacian and emerges, for instance, in the solution of the Laplace equation using spherical
coordinates by applying the method of separation of variables. It is defined as
�L2f ¼ 1

sin h
o

oh
sin h

of
oh

� �
þ 1

sin2 h

o
2f

ou2
: ð2:8Þ
Solutions of (2.1) and (2.3) for the interior and exterior of a sphere, respectively, can be sought in the form
/lðr; h;u; tÞ ¼
X1
‘¼0

A‘

r
a

� �‘
e�r‘tS‘ðh;uÞ þ c:c: 0 6 r < a; ð2:9Þ

/aðr; h;u; tÞ ¼
X1
‘¼0

C‘

r
a

� ��‘�1

e�r‘tS‘ðh;uÞ þ c:c: a < r <1; ð2:10Þ
such that /l is finite at r = 0 and /a remains bounded as r!1; r‘ is an eigenvalue to be determined. The
symbol c.c. designates the complex conjugate of the previous term. The functions S‘ are the surface harmonics
of integral order
S‘ðh;uÞ ¼
X‘
m¼�‘

B‘mY m
‘ ðh;uÞ; ð2:11Þ
which, with the choice B‘m ¼ B‘;�m, are real functions. The functions Y m
‘ ðh;uÞ are known as the spherical har-

monics (Strauss, 1992)
Y m
‘ ðh;uÞ ¼ P jmj‘ ðcos hÞeimu; ð2:12Þ
where P jmj‘ are the associated Legendre functions. The spherical harmonics satisfy
L2Y m
‘ ðh;uÞ ¼ ‘ð‘þ 1ÞY m

‘ ðh;uÞ ð2:13Þ

for ‘ = 0,1,2, . . . and m = �‘, . . . ,�1,0,1, . . . , ‘. The operator L2 has been defined in (2.8). Expressions for the
radial components of the velocity can be obtained from (2.9) and (2.10) by applying ur = o//or. Then, the
pressure disturbances pl and pa can be obtained from (2.2) and (2.4).

Let us write the disturbance of the spherical shape of the interface as a series expansion
fðh;u; tÞ ¼
X1
‘¼0

f‘ðh;uÞe�r‘t þ c:c: ð2:14Þ
By considering f‘(h,u) = f0‘S‘(h,u), where f0‘ is a constant, and using conditions (2.5) and (2.7) one obtains
�r‘f0‘ ¼
‘

a

� �
A‘; r‘f0‘ ¼

‘þ 1

a

� �
C‘: ð2:15Þ
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In addition, we have
ðL2 � 2Þf ¼
X1
‘¼0

f‘ð‘þ 1Þ � 2gf0‘e
�r‘tS‘ þ c:c: ¼

X1
‘¼0

ð‘þ 2Þð‘� 1Þf0‘e
�r‘tS‘ þ c:c: ð2:16Þ
by virtue of (2.13) and (2.14). Substituting normal-mode expressions for ur and p, obtained using (2.9) and
(2.10), into the left-hand side of (2.6), applying the result (2.16) and replacing A‘ and C‘ with (2.15) yields
the dispersion relation for the eigenvalue r‘, which, after some manipulation, may be written as
qlð‘þ 1Þ þ qa‘ð Þr2 � 2ll

a2
ð‘þ 1Þ‘ð‘� 1Þ þ 2la

a2
ð‘þ 2Þð‘þ 1Þ‘

� �
rþ c

a3
ð‘þ 2Þð‘þ 1Þ‘ð‘� 1Þ ¼ 0;

ð2:17Þ

where the subscript ‘ has been dropped from r for convenience. Expression (2.17) may be written in dimen-
sionless form with the following choices of dimensionless parameters (Funada and Joseph, 2002):
l̂ ¼ qa

ql
; m̂ ¼ la

ll
; r̂ ¼ r

a
U

with U ¼
ffiffiffiffiffiffiffi
c

qla

r
: ð2:18Þ
In dimensionless form, expression (2.17) becomes
ðð‘þ 1Þ þ l̂‘Þr̂2 � 2ffiffiffi
J
p ðð‘þ 1Þ‘ð‘� 1Þ þ m̂ð‘þ 2Þð‘þ 1Þ‘Þr̂þ ð‘þ 2Þð‘þ 1Þ‘ð‘� 1Þ ¼ 0 ð2:19Þ
with a Reynolds number
J ¼ qlVa
ll
¼ Oh2 with V ¼ c

ll
; ð2:20Þ
where Oh is the Ohnesorge number. In other words, J�1/2 represents a dimensionless viscosity. Therefore, the
eigenvalue r̂ for viscous potential flow (VPF) can be computed from
r̂ ¼ ð‘þ 1Þ‘ð‘� 1Þ þ m̂ð‘þ 2Þð‘þ 1Þ‘ffiffiffi
J
p
ð‘þ 1Þ þ l̂‘
� �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘þ 1Þ‘ð‘� 1Þ þ m̂ð‘þ 2Þð‘þ 1Þ‘ffiffiffi

J
p
ðð‘þ 1Þ þ l̂‘Þ

" #2

� ð‘þ 2Þð‘þ 1Þ‘ð‘� 1Þ
ð‘þ 1Þ þ l̂‘

vuut ; ð2:21Þ
which has two different real roots or two complex roots. In the former case, the interface does not oscillate and
the disturbances are damped. In the latter case, r̂ ¼ r̂R � ir̂I where the real part represents the damping coef-
ficient while the imaginary part corresponds to the frequency of the damped oscillations.

When both fluids are considered inviscid (IPF), expression (2.21) simplifies to ðm̂ ! 0 and
ffiffiffi
J
p
! 1Þ
r̂ ¼ �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘þ 2Þð‘þ 1Þ‘ð‘� 1Þ

ð‘þ 1Þ þ l̂‘

s
ð2:22Þ
and undamped oscillations are predicted. This is the same expression found by Lamb (1932, Section 275).

2.1. VPF results for a spherical drop

If the external fluid has negligible density and viscosity ð̂l ! 0 and m̂ ! 0Þ, a drop surrounded by a
dynamically inactive ambient fluid is obtained, in which case expression (2.21) becomes
r̂ ¼ ‘ð‘� 1Þffiffiffi
J
p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘ð‘� 1Þffiffiffi

J
p

� �2

� ð‘þ 2Þ‘ð‘� 1Þ

s
: ð2:23Þ
Moreover, for an inviscid drop
ffiffiffi
J
p
! 1 and (2.23) reduces to
r̂D ¼ �i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘þ 2Þ‘ð‘� 1Þ

p
¼ �ir̂�D ð2:24Þ
and the drop oscillates undamped about the spherical form. This result was obtained by Lamb (1932).
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Using the expression obtained from VPF in (2.23), one can readily find two roots for the decay rate as
ffiffiffi
J
p
! 0

in the drop (e.g., high viscosity) for the aperiodic modes. The relevant root on physical grounds is given by
r̂ ¼ r̂�2D

ffiffiffi
J
p 1

2‘ð‘� 1Þ : ð2:25Þ
In the case
ffiffiffi
J
p
!1 (low viscosity, say), the eigenvalues are complex, and then we encounter oscillatory

decaying waves. These eigenvalues behave as
r̂ ¼ ‘ð‘� 1Þffiffiffi
J
p � ir̂�D: ð2:26Þ
2.2. VPF results for a spherical bubble

By taking ql! 0 and ll! 0 in (2.17), the eigenvalue relation for a bubble of negligible density and viscosity
embedded in a liquid is obtained for VPF
r̂ ¼ ð‘þ 2Þð‘þ 1Þffiffiffi
J
p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘þ 2Þð‘þ 1Þffiffiffi

J
p

� �2

� ð‘þ 2Þð‘þ 1Þð‘� 1Þ

s
; ð2:27Þ
where J is defined in terms of the liquid properties. In the limit of an inviscid external fluid
ffiffiffi
J
p
! 1 in (2.27)

and we obtain
r̂B ¼ �i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘þ 2Þð‘þ 1Þð‘� 1Þ

p
¼ �ir̂�B ð2:28Þ
and the bubble oscillates about the spherical shape without damping. This expression was obtained by Lamb
(1932).

The dispersion relation obtained from VPF in (2.27) can be used to study the trend followed by the distur-
bances when

ffiffiffi
J
p
! 0 in the case of the bubble. In this case, monotonically decaying waves are predicted with

decay rate:
r̂ ¼ r̂�2B

ffiffiffi
J
p 1

2ð‘þ 2Þð‘þ 1Þ : ð2:29Þ
In the case of
ffiffiffi
J
p
! 1, VPF analysis for the bubble yields
r̂ ¼ ð‘þ 2Þð‘þ 1Þffiffiffi
J
p � ir̂�B ð2:30Þ
and decaying oscillations are found.

3. Dissipation approximation

Viscous effects can be included for irrotational motion through the dissipation method; neither vortical lay-
ers nor viscous pressure corrections enter into the analysis. This method stems from the evaluation of the
mechanical energy equation on the fluid domain. In this equation, the viscous dissipation in the bulk of the
liquid is approximated by potential flow, while the continuity of tangential stress is enforced at the gas–liquid
interface; the shear stress is put to zero (the gas being considered of negligible density and viscosity). Here, the
procedure described in the work by Wang et al. (2005a,b) is applied to the spherical geometry. Our result goes
further than Lamb’s result, since the effect of viscosity in the frequency of the oscillations is predicted in the
analysis that follows.

3.1. Dissipation approximation for a spherical drop

In the case of a liquid drop surrounded by a vacuum, the mechanical energy equation can be written as
d

dt

Z
V

q
juj2

2
dV ¼

Z
A

n � T � udA�
Z

V
2lD : DdV ; ð3:1Þ



J.C. Padrino et al. / International Journal of Multiphase Flow 34 (2008) 61–75 67
where V is the volume of the liquid sphere of radius a in the linearized problem; A is the surface of the drop
and n is the unit outward normal; u is the velocity field; T is taken as the stress tensor for Newtonian incom-
pressible flow and D is the strain-rate tensor. The last term in (3.1) represents the viscous dissipation. For
potential flow, the following identity holds:
Z

V
2lD : DdV ¼

Z
A

n � 2lD � udA; ð3:2Þ
where D : D = DijDij using Cartesian index notation. Therefore, (3.1) becomes
d

dt

Z
V

q
juj2

2
dV ¼

Z
A
½ð�p þ srrÞur þ srhuh þ sruuu�dA�

Z
A

n � 2lD � udA: ð3:3Þ
At the free surface r = a, we recall that the normal stress balance gives rise to
�p þ srr ¼ �
c
a2
ðL2 � 2Þf: ð3:4Þ
The zero-shear-stress condition is enforced at the free surface
srh ¼ 0; sru ¼ 0: ð3:5Þ
With these boundary conditions, the mechanical energy Eq. (3.3) can be expressed as
d

dt

Z
V

q
juj2

2
dV ¼ �

Z
A

c
a2
ðL2 � 2ÞfurdA�

Z
A

n � 2lD � udA: ð3:6Þ
With juj2 ¼ u2
r þ u2

h þ u2
u and the components of D expressed in spherical coordinates, the integrals in (3.6) can

be evaluated using the formula in Appendix A as well as standard results involving integrals of Legendre func-
tions and Fourier series in complex form (see, for instance, Bowman et al., 1987, and Section 14.2 in Joseph
et al., 2007). The components of u and D in spherical coordinates are found from standard expressions for a
Newtonian fluid and the definition of the velocity potential in (2.9) and (2.10). Then, after carrying out the
integrals in (3.6), this expression reduces to (Appendix B)
� rAe�rt þ �rAe��rt
	 


¼ c
qa3

A
r

e�rt þ A
�r

e��rt

� �
ð‘þ 2Þ‘ð‘� 1Þ � 2m

a2
ðAe�rt þ Ae��rtÞð2‘þ 1Þð‘� 1Þ; ð3:7Þ
dropping the subscript ‘. This has the form
�rþ 2m
a2
ð2‘þ 1Þð‘� 1Þ � c

qa3r
ð‘þ 2Þ‘ð‘� 1Þ

� �
Ae�rt þ c:c: ¼ 0: ð3:8Þ
Therefore, the dissipation approximation gives rise to the dispersion relation
r2 � 2m
a2
ð2‘þ 1Þð‘� 1Þrþ c

qa3
ð‘þ 2Þ‘ð‘� 1Þ ¼ 0: ð3:9Þ
In dimensionless form, this expression becomes
r̂2 � 2ffiffiffi
J
p ð2‘þ 1Þð‘� 1Þr̂þ ð‘þ 2Þ‘ð‘� 1Þ ¼ 0; ð3:10Þ
where the dimensionless parameter r̂ and J have been defined in (2.18) and (2.20), respectively. The eigen-
values are
r̂ ¼ ð2‘þ 1Þð‘� 1Þffiffiffi
J
p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2‘þ 1Þð‘� 1Þffiffiffi

J
p

� �2

� ð‘þ 2Þ‘ð‘� 1Þ

s
; ð3:11Þ
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which has two different real roots or a complex-conjugate pair of roots. For Imðr̂Þ ¼ 0, the decay rate for
monotically decaying waves is obtained. In the case of decaying oscillations ðImðr̂Þ 6¼ 0Þ, the decay rate
ð2‘þ 1Þð‘� 1Þ=

ffiffiffi
J
p

was obtained by Lamb (1932, Section 355) through the dissipation method. In the present
calculations, the relation (3.11) also gives rise to viscous effects in the frequency of the oscillations, which
determine the crossover from the oscillatory-wave regime to the monotonically-decaying-wave regime. Such
effects were not predicted by Lamb’s dissipation method. Hence, no crossover from oscillatory waves to
monotonically decaying ones can be obtained from his calculation. Expression (3.11) can be compared with
(2.23) from VPF and (2.24) from IPF.

As
ffiffiffi
J
p
! 0 (3.11) produces two real roots for the decay rate; the following gives the lowest value for the

aperiodic motion:
r̂ ¼ r̂�2D

ffiffiffi
J
p 1

2ð2‘þ 1Þð‘� 1Þ : ð3:12Þ
In the case of
ffiffiffi
J
p
! 1 the eigenvalues are complex
r̂ ¼ ð2‘þ 1Þð‘� 1Þffiffiffi
J
p � ir̂�D: ð3:13Þ
Hence, one finds oscillatory decaying waves. The definition of r̂�D is given in (2.24).
Prosperetti (1977) studied the initial-value problem posed by small departures from the spherical shape of a

viscous drop surrounded by another viscous liquid. In the case of a drop in a vacuum, he found (3.11) in the
limit of time t! 0 if an irrotational initial condition is assumed. We remark that (3.11) was obtained here by a
different method.

3.2. Dissipation approximation for a spherical bubble

Following the same steps as those described for the drop, the dispersion relation for a spherical bubble
immersed in liquid can also be obtained from the dissipation method. In this case, the eigenvalues are
r̂ ¼ ð2‘þ 1Þð‘þ 2Þffiffiffi
J
p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2‘þ 1Þð‘þ 2Þffiffiffi

J
p

� �2

� ð‘þ 2Þð‘þ 1Þð‘� 1Þ

s
ð3:14Þ
with J determined from the liquid properties. In the case of decaying oscillations, the decay rate given in (3.14)
as ð2‘þ 1Þð‘þ 2Þ=

ffiffiffi
J
p

is the same as the rate computed by Lamb (1932) using the dissipation method without
the explicit inclusion of the surface tension effects in the formulation.

Expression (3.14) yields the following result as
ffiffiffi
J
p
! 0 (m!1, say) for the bubble:
r̂ ¼ r̂�2B

ffiffiffi
J
p 1

2ð2‘þ 1Þð‘þ 2Þ ð3:15Þ
and thus monotonically decaying waves take place with r̂�B defined in (2.28).
In the case of

ffiffiffi
J
p
! 1 (m! 0, say), the dissipation method predicts oscillatory decaying waves with

eigenvalues
r̂ ¼ ð2‘þ 1Þð‘þ 2Þffiffiffi
J
p � ir̂�B: ð3:16Þ
4. Exact solution of the linearized fully-viscous problem

In this section, we summarize the results from the solution of the linearized equations of motion, dropping
the assumption of irrotational flow, for a drop immersed in a vacuum and a bubble of negligible density and
viscosity embedded in a viscous liquid. The result for the drop was presented by Reid (1960) whereas the solu-
tion for the bubble can be obtained following a similar path. In both cases, the dispersion relation coincides
with the corresponding limiting results presented by Miller and Scriven (1968) and Prosperetti (1980a), who
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posed and solved the most general two-fluid problem. The predictions from these dispersion relations are com-
pared with results from the irrotational approximations in Section 5.

The linearized Navier–Stokes equations govern this problem
q
ou

ot
¼ �rp þ lr2u ð4:1Þ
with $ Æ u = 0 in 0 6 r < a for the drop and in a < r <1 for the bubble. Continuity of shear stresses at r = a is
satisfied.
4.1. Exact solution for a spherical drop

Reid (1960) obtained the dispersion relation for the eigenvalue r
a4 ¼ 2q2ð‘� 1Þ ‘þ ð‘þ 1Þ
q� 2‘QJ

‘þ1=2

q� 2QJ
‘þ1=2

" #
� q4 ð4:2Þ
with
QJ
‘þ1=2ðqÞ ¼ J ‘þ3=2ðqÞ=J ‘þ1=2ðqÞ; a2 ¼ r�Da2

m
¼ r̂�D

ffiffiffi
J
p

;
q2

a2
¼ r

r�D
¼ r̂

r̂�D
; ð4:3Þ
where r�D is the frequency of oscillations from inviscid potential flow (IPF) given in (2.24). A thorough discus-
sion on the solution of (4.2) is presented by Chandrasekhar (1959, 1961) when q is real. Considering ‘ fixed, the
right-hand side of (4.2) is a function of q, U(q) say. On the axis of positive q, there is an infinite number of
intervals where U(q) is positive. The first of these intervals, which contains q = 0, encloses a maximum
ða2

maxÞ. For a2 < a2
max this first interval gives two real roots of (4.2), which determine the slowest decay rate.

Since a2 ¼ r̂�D
ffiffiffi
J
p

, for every mode ‘, the magnitude of J defines the roots. In the other intervals, one also
has 0 6 U(q) <1. When a2 > a2

max (4.2) admits complex-conjugate eigenvalues with positive real parts which
give the lowest decay rate; these waves oscillate as they decay.

As J! 0, the decay rate from the exact solution for monotonically decaying waves on a drop surrounded
by gas behaves as
r̂ ¼ r̂�2D

ffiffiffi
J
p 2‘þ 1

2ð‘� 1Þð2‘2 þ 4‘þ 3Þ
ð4:4Þ
given by Miller and Scriven (1968). From the exact solution (4.2), the trend of the complex eigenvalue r̂ for the
drop as

ffiffiffi
J
p
!1 was presented by Chandrasekhar (1959, 1961) and Miller and Scriven (1968) and follows the

same result (3.13) from the dissipation method.
4.2. Exact solution for a spherical bubble

A procedure similar to the one applied to the drop gives rise to the following dispersion relation for the
bubble:
a4 ¼ ð‘þ 2Þq2
ð2‘þ 1Þq2 � 2ð‘þ 1Þð‘� 1Þ ð2‘þ 1Þ � qQH

‘þ1=2

h i
ð2‘þ 1Þ þ q2=2� qQH

‘þ1=2

� q4 ð4:5Þ
with
QH
‘þ1=2 ¼ H ð1Þ‘þ3=2ðqÞ=H ð1Þ‘þ1=2ðqÞ ð4:6Þ
and a2 and q given in (4.3). In these relations, r�B from IPF given in (2.28) for a bubble is used instead of r�D.
Expression (4.5) is the same dispersion relation found by Miller and Scriven (1968). This dispersion relation

only admits complex roots as a consequence of the character of the Hankel functions (Prosperetti, 1980a).
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Therefore, for a bubble, only oscillatory decaying waves are predicted. For a drop, we recall that real eigen-
values can be found.

For a gas bubble in a viscous liquid, the decay rate r follows, as
ffiffiffi
J
p
! 0
r̂ ¼ r̂�2B

ffiffiffi
J
p 2‘þ 1

2ð2‘2 þ 1Þð‘þ 2Þ
: ð4:7Þ
For
ffiffiffi
J
p
! 1 (4.5) yields the same expression (3.16) obtained with the dissipation method. These results for

small and large J were presented by Miller and Scriven (1968).

5. Results and discussion

In this section, the comparison of the results for the decay rate and frequency of the waves according to
viscous potential flow (VPF) and the dissipation method (DM) with the exact solutions of the fully-viscous
linear problem are presented for a drop and a bubble. A wide interval is selected for the mode number ‘ start-
ing with ‘ = 2. The smallest value of ‘ = 2 is chosen since lower values yield compressive or expansive motions
of the drop interface which are not compatible with the incompressibility assumption or a non-physical static
disturbed interface. For higher values of ‘, the exact fully-viscous solution for the drop predicts oscillations
that decay faster (Miller and Scriven, 1968). The same lowest value of ‘ = 2 is selected for the bubble case.

Fig. 1(a) shows the critical Reynolds number Jc as a function of ‘ for a drop. The number Jc is defined as
the value of J at a given ‘ for which transition from monotonically decaying waves (aperiodic waves) to decay-
ing oscillations occurs. For J 6 Jc the eigenvalues r̂ are real and monotonically decaying waves take place,
whereas for J > Jc the eigenvalues are complex and the waves decay through oscillations. For systems with
J < 0.5, the viscous theories predict monotonically decaying waves for a drop and for all modes Fig. 1(b) pre-
sents the trends of Jc with ‘ for VPF and DM for a bubble. Recall that the exact solution always predicts
decaying oscillations (i.e. complex eigenvalues) in the bubble case. Therefore, the exact solution does not give
rise to a critical J. If DM predicts oscillatory decaying waves, then VPF gives the same outcome. If VPF pre-
dicts monotonically decaying waves, then the same behavior is obtained from DM. The viscous irrotational
theories give rise to monotonically decaying waves for a bubble with J < 10 and for all modes.

For a drop, the decay rate and wave frequency as a function of J are presented in Fig. 2(a) and (b), respec-
tively, for ‘ = 2 as predicted by VPF, DM and the exact solution. The wave frequency given by IPF is also
included for comparison. For large J, DM and the exact solution show excellent agreement (see Section
4.1), whereas VPF is off the mark as anticipated from the comparison of (2.26) with (3.13). The wave frequen-
cies from the three viscous theories tend to the inviscid solution for large J. As J decreases (below J = 10, say),
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Fig. 1. Critical Reynolds number Jc as a function of the mode number ‘ for a drop and a bubble.
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transition from the oscillatory-wave regime to the monotonically-decaying-wave regime occurs. In the point of
transition, the frequency becomes identically zero and the curve of the decay rate bifurcates yielding two real
and different roots. In Fig. 2, the eigenvalue r̂1, representing the least damped mode of decay, is plotted. For
small J, DM predicts the decay rate with a discrepancy of, nearly, 20% with respect to the exact solution.
Fig. 2(a) and (b) reveals that the viscous irrotational theories qualitatively follow the trend described by
the exact solution and are able to predict an oscillatory-to-aperiodic-wave crossover Jc by considering viscous
effects in the frequency.

For a bubble, the decay rate and wave frequency are presented in Fig. 2(c) and (d), respectively for ‘ = 2.
Notice that the decay rate follows somewhat similar trends as those described for the drop. For small J, VPF
shows the lowest discrepancy, of nearly 40%, with the exact decay rate. Fig. 2(d) shows that the exact solution
does not predict transition to the monotonically-decaying-wave regime, but the wave frequency tends
smoothly to zero as J decreases (the viscosity increases, say). On the other hand, VPF and DM do render
a crossover Jc for which transition to monotonically decaying waves occurs.

For large values of J, if one of the fluids has negligible density and viscosity, a thin boundary layer results
(Miller and Scriven, 1968). Thus, an irrotational velocity field works as a good approximation. In terms of the
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dissipation approximation, such a thin boundary layer yields a negligible contribution to the total viscous dis-
sipation, which is thus determined by the irrotational flow over the interior of the fluid domain (see, for
instance, Landau and Lifshitz, 1959, Section 25). At the free surface, however, the zero-shear-stress condition
is enforced in the formulation. Indeed, expression (3.13), obtained from (3.11) as a first-order approximation
in the dimensionless viscosity � � J�1/2, and the results in Section 4.1, indicate that DM and the exact solution
agree to first order in �. This can also be said for the bubble. By contrast, as � increases (e.g., the liquid vis-
cosity increases), the boundary layer becomes thicker and the performance of the dissipation method deteri-
orates as the difference for the higher order terms in � between DM and the exact solution becomes significant.
A non-negligible boundary layer flow contributes substantially to the rate of viscous dissipation, hence the
decay rate increases. However, the increasing trend of the decay rate is reversed as J continues decreasing
because the motion for small J, as discussed by Prosperetti (1980a), is restrained in such a drastic way that
the energy dissipation per unit time, and thus the decay rate, has to decrease as J goes to zero. In the case
of the drop, the oscillatory-to-aperiodic-wave crossover sharply represents this change in the trend of the
decay rate.

For a bubble (Fig. 2(c)), oscillatory decaying waves are always predicted by the exact linearized theory yet
the smooth region where the decay-rate graph reaches a maximum as a function of J suggests a transition in
the structure of the flow that follows on the lines explained above.

Computations carried out for several higher modes (‘ = 3, 4 and 10) have shown that the features com-
mented for the fundamental mode are also observed for these other modes (not plotted here). The general
trend is that the decay rate increases with increasing ‘. The analysis of the predictions from the exact solution
indicates that the change-over from oscillatory waves to monotonically decaying waves takes place for a larger
critical J as ‘ increases for a drop. Even though no transition to overdamped aperiodic waves occur for the
bubble, the interval of J for which very low frequencies are obtained becomes wider as ‘ increases. These
results show that viscosity damps the motion more effectively for shorter waves. The viscous irrotational the-
ories follow these tendencies.

For a drop, when J	 1 in the monotonically-decaying-wave regime, VPF shows good agreement with the
exact solution for short waves or large ‘ (not plotted). This tendency can be anticipated from (2.25) and (4.4).
The same response is observed for a bubble. In the case of large mode number ‘, the dynamics of the short
waves may be modeled as small disturbances about a horizontal, plane free surface. This problem was solved
by Lamb (1932, Section 349). For large viscosity (i.e. small

ffiffiffi
J
p

), he argues that the least damped mode ‘rep-
resents a slow creeping of the fluid towards a state of equilibrium with a horizontal surface’. From Lamb’s
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analysis, it is clear that this flow is nearly irrotational, thus explaining the good agreement between VPF and
the exact solution. Viscous potential flow is restricted to ‘small’ vorticity, but it is not restricted to ‘small’ vis-
cosity (Joseph and Wang, 2004).

As J increases, waves of certain length becomes oscillatory waves. For instance, in the case of J = 40 shown
in Fig. 3 , the crossover values of ‘ according to every viscous theory enters into the analysis. In this case,
oscillatory waves exist according to the viscous theories for ‘ < ‘DM, whereas these theories agree and predict
monotonically decaying waves for ‘ > ‘exact. For large J, the crossover ‘c obtained from each viscous theory
may also be large (e.g., ‘c > 100 for J = 106), since viscous effects are weak and short waves oscillate. In the
regime of decaying oscillatory waves, ‘ 6 ‘c, there exists a region of good agreement between DM and the
exact solution that extends to higher values of ‘ P 2, whereas VPF shows poor agreement in comparison.
At least for values of ‘	 ‘exact in the neighborhood of ‘ = 2 and large J, DM provides the best approximation
of the decay rate for the drop or the bubble.

6. Concluding remarks

The results obtained from the viscous purely irrotational approximations for the decay rate and frequency
of the oscillations for a drop and a bubble follow the trends described by the exact solution, showing quali-
tative agreement with most of the features depicted by this theory. The damping role of viscosity in the dynam-
ics of the waves is adequately described by the viscous irrotational theories through the modeling of the decay
rate and frequency of the oscillations, in contrast to the classical inviscid theory, which predicts undamped
oscillations. Quantitative agreement is also demonstrated for certain intervals of modes and dimensionless vis-
cosity. Some notable features from the comparison carried out in this study for the drop and the bubble are:

• In the case of short waves (i.e. large mode number ‘) and large viscosity, VPF gives a very good approx-
imation of the decay rate for both the drop and the bubble. On the other hand, the dissipation method gives
rise to values of the decay rate in closer agreement with the exact solution within a certain ‘ interval, includ-
ing ‘ = 2, in the oscillatory-wave regime (i.e. long waves) for large values of the Reynolds number J or
‘small’ viscosity. This trend resembles the tendencies obtained for free gravity waves perturbing a plane
interface by Wang and Joseph (2006). Nonetheless, a notable difference between their results and those
given here is that surface tension has a stronger regularizing effect on short waves than gravity does.

• VPF approximates the variation of frequency with the mode number with the lowest discrepancy for a fixed
J. In particular, the transition from oscillatory to monotonically decaying waves predicted by this irrota-
tional theory occurs at a higher critical value of ‘ than the threshold given by the dissipation method.

• The viscous irrotational approximations predict effects of viscosity on the frequency of the oscillations. For
every mode, there exists a J for which transition from oscillatory decaying waves to monotonically decaying
waves occurs for either the drop or the bubble. Whereas a transitional value of J is predicted by the exact
solution for a drop, only oscillations are found by this theory for a bubble. In this case, very small frequen-
cies are obtained as

ffiffiffi
J
p
! 0 (e.g., m!1) from the exact solution.

• The viscous irrotational theories do not give rise to a continuos spectrum of eigenvalues for the bubble as
has been found for the exact solution by Prosperetti (1980a).
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Appendix A. Integration formula

In performing the integration of the mechanical energy equation (3.6) in Section 3, the following formula is
invoked,
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Z
A
ðBþ BÞðC þ CÞdA ¼ 2

Z
A

Re½BC þ BC�dA ¼ 2Re

Z
A
ðBC þ BCÞdA

� �
; ðA:1Þ
where A represents either a surface or a volume and B and C are complex fields. The bar indicates complex
conjugate and Re[ Æ ] is a linear operator that returns the real part of a complex number.

Appendix B. Integrals of the mechanical energy equation

Performing the integrals in (3.6) gives rise to the following results:
d
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where we have reckoned with standard formulae for integrals concerning spherical harmonics. F‘m denotes
real constants that follows from (2.11).

References

Basaran, O., 1992. Nonlinear oscillations of viscous liquid drops. J. Fluid Mech. 241, 169–198.
Bowman, J.J., Senior, T.B.A., Uslenghi, P.L.E. (Eds.), 1987. Electromagnetic and Acoustic Scattering by Simple Shapes. Hemisphere

Publishing Corporation, New York.
Chandrasekhar, S., 1959. The oscillations of a viscous liquid globe. Proc. London Math. Soc. 9 (3), 141–149.
Chandrasekhar, S., 1961. Hydrodynamic and Hydromagnetic Stability. Oxford University Press.
Funada, T., Joseph, D.D., 2002. Viscous potential flow analysis of capillary instability. Int. J. Multiphase Flow 28, 1459–1478.
Joseph, D.D., 2003. Viscous potential flow. J. Fluid Mech. 479, 191–197.
Joseph, D.D., 2006. Potential flow of viscous fluids: historical notes. Int. J. Multiphase Flow 32, 285–310.
Joseph, D.D., Liao, T.Y., 1994a. Potential flows of viscous and viscoelastic fluids. J. Fluid Mech. 265, 1–23.
Joseph, D.D., Liao, T.Y., 1994b. Viscous and viscoelastic potential flow. In: Sirovich, S., Arnol’d, V. (Eds.), Trends and Perspectives in

Applied Mathematics, vol. 100. Springer, pp. 1–54.
Joseph, D.D., Wang, J., 2004. The dissipation approximation and viscous potential flow. J. Fluid Mech. 505, 365–377.
Joseph, D.D., Funada, T., Wang, J., 2007. Potential Flows of Viscous and Viscoelastic Fluids. Cambridge University Press.
Kelvin, Lord, 1890. Oscillations of a liquid sphere. In: Mathematical and Physical Papers, vol. 3. Clay and Sons, London, pp. 384–386.
Lamb, H., 1881. On the oscillations of a viscous spheroid. Proc. London Math. Soc. 13, 51–66.
Lamb, H., 1932. Hydrodynamics, sixth ed. Cambridge University Press, Reprinted by Cambridge University Press, 1993.
Landau, L.D., Lifshitz, E.M., 1959. Fluid mechanics. In: Course of Theoretical Physics, First ed., vol. 6. Pergamon Press, Reprinted by

Pergamon Press, 1986.
Lundgren, T.S., Mansour, N.N., 1988. Oscillations of drops in zero gravity with weak viscous effects. J. Fluid Mech. 194, 479–510.
Miller, C.A., Scriven, L.E., 1968. The oscillations of a fluid droplet immersed in another fluid. J. Fluid Mech. 32 (3), 417–435.
Patzek, T.W., Benner, R.E., Basaran, O.A., Scriven, L.E., 1991. Nonlinear oscillations of inviscid free drops. J. Comput. Phys. 97, 489–

515.
Prosperetti, A., 1977. Viscous effects on perturbed spherical flows. Quart. Appl. Math. 35, 339–352.
Prosperetti, A., 1980a. Normal-mode analysis for the oscillations of a viscous liquid drop in an immiscible liquid. J. Méc. 19 (1), 149–182.
Prosperetti, A., 1980b. Free oscillations of drops and bubbles: the initial value problem. J. Fluid Mech. 19 (1), 149–182.
Rayleigh, Lord, 1896. The Theory of Sound, second ed. MacMillan, London, Reprinted by Dover, New York, 1945, vol. 2, p. 371.
Reid, W.H., 1960. The oscillations of a viscous liquid drop. Quart. Appl. Math. 18, 86–89.
Stokes, G.G., 1851. On the effect of the internal friction of fluids on the motion of pendulums. Trans. Cambr. Phil. Soc. IX, 8-106 (read on

December 9, 1850) Mathematical and physical papers vol. 3, p. 1.



J.C. Padrino et al. / International Journal of Multiphase Flow 34 (2008) 61–75 75
Strauss, W.A., 1992. Partial Differential Equations: An Introduction. John Wiley & Sons, Inc.
Tomotika, S., 1935. On the stability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid. Proc. R. Soc. London

A 150, 322–337.
Tsamopoulos, J.A., Brown, R.A., 1983. Nonlinear oscillations of inviscid drops and bubbles. J. Fluid Mech. 127, 519–537.
Valentine, R.S., Sather, N.F., Heideger, W.J., 1965. The motion of drops in viscous media. Chem. Eng. Sci. 20, 719–728.
Wang, J., Joseph, D.D., 2006. Purely irrotational theories of the effect of the viscosity on the decay of free gravity waves. J. Fluid Mech.

559, 461–472.
Wang, J., Joseph, D.D., Funada, T., 2005a. Pressure corrections for potential flow analysis of capillary instability of viscous fluids. J. Fluid

Mech. 522, 383–394.
Wang, J., Joseph, D.D., Funada, T., 2005b. Viscous contributions to the pressure for potential flow analysis of capillary instability of two

viscous fluids. Phys. Fluids 17, 052105.


	Purely irrotational theories for the viscous effects on the oscillations of drops and bubbles
	Introduction
	Viscous potential flow analysis of a spherical drop immersed in another fluid
	VPF results for a spherical drop
	VPF results for a spherical bubble

	Dissipation approximation
	Dissipation approximation for a spherical drop
	Dissipation approximation for a spherical bubble

	Exact solution of the linearized fully-viscous problem
	Exact solution for a spherical drop
	Exact solution for a spherical bubble

	Results and discussion
	Concluding remarks
	Acknowledgements
	Integration formula
	Integrals of the mechanical energy equation
	References


